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Roughening transition in the Blume-Emery-Griffiths model 
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Deparlment o f  Physics, Faculty of Science. University of Tokya, Bunkyo-ku, Tokyo 113, 
Japan 

Received 24 May 1993 

Abstract Studying the ground-state properties of the thteedimensional Blume-Eme~4riffiths 
model, it i s  shown that a continuous phase bansition i s  always preceded by the roughening 
transition. In contrast, with a discontinuous phase tmnsition there i s  always associated a non- 
rough interface. A possible behaviour of the roughening transition in this modd at non-zero 
~emperrttlres is  suggested. 

1. Introduction 

A knowledge of interfacial behaviour is essential to understand bulk critical behaviour [ 1). 
Using some scaling arguments, one can show that the correlation length, which is the 
fundamental quantity for the bulk critical behaviour, and the interface thickness diverge 
almost in the same way while approaching the critical point. In contrast, at discontinuous 
phase lmnsitions both these quantities usually remain finite. 

Apart from the thickness, another characteristic of the interface is its roughness. For the 
two- or higher-than-threedimensional models, the change of roughness during approach of 
the critical point is only quantitative. In the first case the interface is always rough, while 
in the second case it i s  always bounded [2]. The roughness is of particular importance, 
however, for studying three-dimensional models where the interface can undergo the 
roughening transition [3]. Is the roughness of the interface somehow connected with the 
kind of phase transition? In this paper we address this problem, which up to now has 
seemingly evaded more thorough consideration. 

Our results are based mostly on ground-state analysis of the Blume-Emery-Griffiths 
(BEG) model, which is performed in section 2. A discussion extended to non-zero 
temperatures is presented in section 3. Section 4 contains our conclusions. 

2. BEG model-ground-state properties 

Consider the three-dimensional S = 1 Ising model with the biquadratic interaction K and 
the one-ion anisotropy D, described by the foIlowing HamiItonian 
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where Si = 0, f l  and (i, j )  stands €or the summation over the nearest-neighbouring pairs. 
The model is arranged on the simple cubic lattice of side L(N = L3).  Hereafter, the bilinear 
coupling constant J is set to unity. 

The model (2.1) is the so-called BEG model, which was originally introduced to describe 
phase separation and superfluidity in 3He-4He mixtures [4]. This model has been the subject 
of many theoreticd studies and its thermodynamical properties, especially in the two- and 
three-dimensional cases, are already well known. Recent resuIts obtained by extensive 
Monte Carlo simulations, as well as some references to previous works, can be found in 
Wang et al [S, 61. At the ground state, the thermodynamical properties can be summarized 
as follows. 

(i) D c 0. For K > - 5 D - 1, there is a ferromagnetic ordering (-) with all Si = - I 
or (+) with all Si = 1, while for K c -$D - 1 there is a paramagnetic ordering (0) with 
all Si = 0. The phase transition between these two phases is discontinuous (thick, dashed 
line in figure 1). In actual fact, this is a triple line where all three phases (+), (-) and (0) 
coexist. 

(ii) D > 0. For K > - D- 1, there is a ferromagnetic ordering, while for K e - D -  1 
there is a staggered ordering (in the first sublattice all Si = 0 and in the second one 
Si = kl at random). The nature of the phase bansition between thest two phases (tilted, 
thick, solid line in figure 1) is not absolutely certain but there are sbong arguments that 
this is a continuous phase transition [6]. The phase transition between the staggered and 
paramagnetic phases (vertical, thick, solid line in figure 1) is also continuous. 

Assuming that the parmeters K and D have such values that the model is 
ferromagnetically ordered, let us impose on the surface of the cube the boundary conditions 
which induce the (+) phase in the upper part of the cube and the (-) phase in the Iower 
part (figure 2). 

D 

Figure 1. The ground-state phase diagmm of the model (U), The thick, solid, and dashed lines 
denote the bulk continuous and discontinuous phase transitions, respectively, which separate 
the parmagnetic (P), ferromagnetic (F), and the staggered (S) phases. The region of different 
interface structures (aHb are described in the text. 

Rigorous determination of the structure of the created ground-state interface is a non- 
trivial problem. Our approach to this problem is certainly non-rigorous but in our opinion 
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L 

Figure 2. The boundary conditions on the surface of the L x L x L cube which induce the 
interface between the two ferromagnetic phases (+I and (-1, 

it leads to the exact result. First Iet us assume that the ground-state interface has the SOS 
structure (it is possible to show that some simple buIbs or ‘backwards bends’ increase the 
energy but we are not sure whether we can eliminate aI1 such non-SOS configurations). 
Moreover, it is obvious that for some values of parameters (K, D) the interface has the 
same simple structure as the ground-state interface in the S = 1 ferromagneric Ising model 
(it must be so at least for K = 0 and D 4 m). For some other values of parameters, we 
expect that the interface is covered by 0 states. The next assumption is that the thickness of 
this covering layer is one (this assumption might not be satisfied for the boundary conditions 
which induce a step in the interface; here, we believe, it is correct). We are thus led to find 
the minimum energy configurations among such configurations as the one shown in figure 3 
(this is actuaily its section but it is easy to imagine the three-dimensional extension). The 
excess energy of such configurations is given by 

E = DLz + Nb(x + K) (2.2) 

where Nb is the number of broken bonds. Notice that due to the last assumption the first 
term is constant for all such configurations. Thus we arrive at the following conclusion. 
For 1 + R > 0, the excess energy E is minimal for minimal NI,, i.e. the intruding 0 states 
constitute a flat single layer, while for I + K e 0, &, must be maximal, i.e. the intruding 
0 states constitute a fluctuating surface (such configurations are described below and an 
example is shown in figure 4(c)). It seems to us that the nearest-neighbours interaction 
and the homogeneous nature of (+) and (-) phases should not Iead to more complicated 
configurations of the ground-state interface. A rigorous approach to this problem is left for 
a further study. 

+ + + + + + + + + + + + + + + + + +  
+ + + + + + + + + + + + + + + + + +  
+ + + + * c + * + + + + + * + * I c  

Figure 3. Atypical configuration of the interface with an intruding layer of the 0 states. 
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Once the candidates for the minimal energy configurations have been 'guessed', we 
can easily calculate their energy and determine the region of their existence. In the limit 
L -+ CO, the results are as follows. 

(a) 4 + 6 K  + D > 0 and 2 + 4K + D > 0. The interface is composed of two layers 
of opposite spins. It resembles the ground-state interface in the S = ferromagnetic king 
model. 

(b) 2 + 4K + D < 0 and K > -1 .  The interface is also flat but the (+) and (-) 
phases are separated by an additional single layer of 0 states. Of course, there is a twofold 
degeneracy. 

(c) 4+6K + D < 0 and K < -1. The interface is strongly degenerate. The phases (+) 
and (-) are also separated by 0 states. However, the intruding layer is not flat, it always 
changes its height at neighbouring sites by one. Except for the intruding layer, the interface 
resembles the ground-state interface in the three-dimensional antiferromagnetic king model 
for a sufficiently strong magnetic field [7]. 

The regions described in cases (aHc)  are shown in figure 1 .  For K = 0, the interfacial 
behaviour of the model (2.1) has already been studied [8] but, of course, the fluctuating 
ground state (c) does not appear in this case. 

The same considerations can be given to the two-dimensional BEG model as well. Then 
the configurations of the two-dimensional interface described in cases (a)-(c) have their 
one-dimensional analogues, which are depicted in figure 4. Of course, the regions of the 
existence of the ground states shown in figure 4 for the two-dimensional BEG model are 
modified, but the topology of the ground-state phase diagram is the same as that in figure 1. 
This topology is preserved also for higher-dimensional (d > 3) cases. 

Now let us assume that the parameters K and D are chosen in such a way that the 
model exhibits staggered ordering. We can again impose on the surface of the cube the 
appropriate boundary conditions which induce an interface. The structure of this interface 
is now as follows: 

(d) - (D/5 )  - 1 > K > -D - 1 .  The interface is composed of two flat layers with 
staggered ordering which is arranged in an unfavourable way: a 0 state from one layer 
has as its nearest neighbour in the second layer also a 0 state. Analogously, randomly 
distributed f states have as neighbours in the other layer also f states. Notice that the 
pairs of neighbouring non-zero states are either both in the + state (++) or both in the 
- state (--). The interface is also strongly degenerate (- 2L1/2) but this degeneracy does 
not allow the interface to wander. The corresponding situation for the two-dimensional 
model is shown in figure 5(d). 

(e) K < -D  - 1. The non-zero states now become even more unfavourable and as a 
result one spin of (++) or (--) pairs is switched into a 0 state. Hence, the interface can be 
regarded as consisting of two layers of 0 states. There are again a lot of configurations of 
the interface with the same energy and the situation is basically similar to that described in 
case (c).  The analogous situation for the two-dimensional model is depicted in figure 5(e). 

(f) K > - ( D / 5 )  - 1. This time the 0 states become unfavourable and one spin of 
each (00) pair is switched into a non-zero state. The interface can now be seen as a 
random surface (of thickness two) of non-zero states (all spins in the (+) are all in the (-) 
states). There is again a strong degeneracy of the interface and the ensemble of interfaces 
resemble the ones already described in (c) and (e). Notice that all spins of the interface, 
in contrast to the spins in the bulk, have to be in the same state. This is the onset of the 
ferromagnetic ordering which will be created after the order-order phase transition. For the 
two-dimensional model the analogous situation is presented in figure 5(f). 

As we have already mentioned, the ground-state transition between the staggered and 
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f f  + + + +  + + +  
+ +  + + + +  + + +  
+ + + + + + + + +  
f + + i f + +  + +  
+ + + * + + +  + +  

a) . . . . . . . . . 
........ ~ 

~~ ....... 
-~ ~ ~~~. .. 
. . . . . . ~ ~ ~  

+ + + + * + + + +  
+ + + + + + * + +  
+ + i f + + + + +  

+ + + + + + + + +  
b) + l o o o o o o o l +  

~ ~ ~ ~ ~ ~ . . .  
........ ~ 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

+ + * + + +  + + +  
f f  + + * +  + + +  

. . . .~~ ~ ~~ 

.. . ... ~ ~~ 

Figure 4. The interface s m c h m  for the two-dimensional BE0 model in cases analogous to the 
cases (a), (b), and (c) described in the text. 

ferromagnetic phases and the staggered and paramagnetic phases is regarded as a continuous 
one, but arguments for this are non-rigorous and mostly based on the numerical results [5,61. 
In agreement with the general notion that the surface tension vanishes at the continuous 
phase transition, our results provide further support for the continuity of these transitions. 
Namely, it is elementary to show that the excess energy for the interface in the cases (c). 
(e) and (f) vanishes along the solid thick lines. In contrast, along the dashed thick line 
the excess energy of the configuration (b) does not vanish. This confirms that this is a 
discontinuous phase transition. The order of phase transitions as suggested by numerical 
results is confirmed in the same way also for the two-dimensional model. 

3. Thermodynamics and roughening transition for non-zero temperatures 

As is well known, the characteristic feature of the interfacial behaviour in the three- 
dimensional models is the presence of the roughening transitions [3]. In spite of considerable 
efforts to find more, there is still only one exactly solvable model which exhibits the 
roughening transition, namely the so-called BCSOS model [9]. The existence of this 
transition, however, is proven also for other models [ 101 and it seems that, unless there 
are some special reasons, the roughening transition should be. present in models such as 
(2.1) as well. In the previous section we have shown, however, that for some values of 
the parameters K and D the ground-state interface is strongly degenerate and resembles a 
wandering, fluctuating surface. It is easy to show that the ensemble of these fluctuating 



5700 A Lipowski and M Suzuki 

1 0 - o + o - o +  
0 1 0 - o + o + o  
- o + o + o + o -  
0 - o + o - 0 - 0  
+ o - o + o + o +  

0 1 0 - 0 - 0 - 0  
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o + + o + + + + o  
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- o + o + o - o +  

Flgure 5. The interface smcture for the two-dimensional B f f i  model in cases analogous to the 
cases (d), (e). and (0 described in the text. 

interfaces is equivalent to the high-temperature limit of the already mentioned BCSOS model. 
As an immediate consequence we obtain that the ground-state interface is rough, which for 
the antiferromagnetic king model was also confirmed in Monte Carlo simulations [7]. The 
thin solid lines in figure 1 can thus be regarded as the lines of the ground-state roughening 
transitions. Another consequence of the equivalency with the BCSOS model is that in 
the limit L + 00 the degeneracy of the ground-state interface behaves like qL1 where 
q = (4)3/2 X 1.539. This follows from the equivalency of the BCSOs with the six-vertex 
model [ 111. For two-dimensional models, the degeneracy of such a rough ground-state 
interface is equal to the number of random walks which return to the origin after L steps, 
and hence asymptotically it behaves like ZL.  

The continuous 
phase transition from the staggered to the paramagnetic phase is always preceded by the 
ground-state roughening transition. The roughening transition also precedes the continuous 
phase transition between the staggered and ferromagnetic phases. On the other hand, the 
discontinuous phase transition between the ferromagnetic and paramagnetic phases is not 
preceded by such roughening transition. As a consequence we obtain that at the ground-state 
the line of the roughening transitions join the bulk phase boundary exactly at the junction 
of the lines of continuous and discontinuous phase transitions. 

A qualitative analysis of the bulk phase diagram in the (K. T )  plane (where T is the 
temperature, and the Boltzmann constant ks is set to unity) in connection with the interfacial 
behaviour, and for some representative values of D ,  is given below. Although we have put 

3 

There is one striking feature of the phase diagram in figure 1. 
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a scak on the temperature axis, the values of the critical temperature and tbe roughening 
temperature are very approximate. 

The bulk phase diagram (thick, solid lines denote continuous phase 
transitions) and the conjectured behaviour of the roughening transition (thin, solid line) 
are presented in figure 6. As regards the ground-state structure of the interface, this case 
is the richest. Lowering the vdue of K ,  according to fip I ,  we encounter four changes 
of ground state. Since there is no physical reason why the rough ground-state interface 
should become localized for higher temperatures, we expect vanishing of the roughening 
transition for K = - I ,  -4, and -2. In the same way as €or the antiferromagnetic king 
model, this vanishing can be understood as being caused by the vanishing of the elasticity 
of the interface as K approaches the above listed values [12]. 

(i) D = I. 

T 

2 

1 

-2 -1.5 -' K 

F&ure 6. The bulk pbase diagram in the (K, T> plane far D = 1. Thick, solid lines denote 
the continuous phase transitions while the conjectured behaviour of the roughening transition is 
denoted by the thin solid line, A non-rough interface exists in the dashed region. 

Vanishing of the roughening temperature TR can be also explained using a simple 
energy-entropy argument. Consider the roughening transition in the ferromagnetic phase 
for -I  e K < -$ (and D = 1). According to figure 6, the ground state is a non-rough 
interface (b). Due to the very strang degeneracy of the rough configurations (c), we expect 
that for a sufficiently h$h temperature the interface will be rough. Simple comparison of 
free energies leads to the folIowing estimation of the roughening temperature: 

As K approaches -1 from above, TR vanishes linearly. For K > -: the ground-state 
interface does not have the intruding layer of 0 states and the same considerations give the 
following expression for the roughening temperature: 

4 + D + 6 K  
.TR = - 2.32(4 + D + 6K). 

In 4 
This change of the ground state is responsible for the change of a slope at K = -1 in 
figure 6. For low temperatures these simple considerations should be accurate, Similar 
results can be obtained for the interface in the staggered phase. 
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T 

2 

1 

0 

1 
-1 0.5 0 

K 

Figure 7. The buLk phase diagram in the (K, T) plane for D = 0. 

The interesting phenomenon is the ground-state roughening at K = -2. It follows from 
figure I that for D = 1 and K -= -2 the system enters the rough region (e), which precedes 
the continuous phase transition along the vertical line. However, in the reduced parameter 
space (K, T ) ,  this is difficult to observe. 

(ii) D = 0. With decrease of the value of D the criticd temperature between the 
staggered and paramagnetic phases (figure 4) also decreases. At the marginal value D = 0, 
the staggered ordering becomes absent, even at the ground state, and the resulting phase 
diagram is shown in figure 7. The ground-state roughening'takes place at K = -1. The 
line of roughening transition joins the bulk phase diagram at the ground state, 

(iii) D = - 1, There is no staggered phase in this case either. The lines of continuous 
and discontinuous (thick, dashed line) phase transitions meet at the tricritical point (black 
circle in figure 8). 

-r 

2 

1 

0 

K 

Figure 8. The bulk phase diagram in the (K, T) plane for D = -1. Thick dashed lines denote 
the discontinuous phase transitions. The tricritical point ,is denoted by a black circle. The 
behaviour of the roughening transition in the vicinity of the bulk phase boundary is unknown. 
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How should we draw the Iine of the roughening transition? In the ordered phase, the 
ground-state interface is non-rough. Hence the roughening tramition should not vanish at 
least up to the phase boundary. Recalling the ground-state diagram (figure 11, one can 
be tempted to draw the line of the roughening transition in such a way that it meets the 
phase boundary exactly at the tricritical point. In the same way as previously we can obtain 
some estimations of TR using energy-entropy considerations. Compaing these: estimations 
with the scarce numerical data 161, we can see that they locate the roughening transition 
considerably higher than the tricritical point. The situation is schematically depicted in 

Some indications that the interface is non-rough along the triple line (at least at low 
temperatures) come also from studies of the so-called interfacial adsorption [13]. As we 
have already mentioned in the previous section, in the regions (b), (c) and (e) the phases 
(+) and I-) are separated by the intruding Iayer of 0 states. This intruding layer will persist 
even at non-zero temperatures. The interesting phenomenon appears while approaching the 
bulk phase boundary. The width of the intruding layer remains finite at the criticd point 
for the continuous phase transition and it diverges for the discontinuous one [13]. Some 
scaling arguments show [14] that for the two-dimensional model the divergence of the width 
of the intruding layer is well described by the mode1 of unbinding of a one-dimensional 
interface from a rigid wall. The phenomenon can be regarded as unbinding from a rigid 
waIl also in the three-dimensional model [8]. In this case, the interface undergoes a series 
of discontinuous layering transitions, which suggests that the interface is non-rough [ 151. 
Such discontinuous layering transitions were detected, however, only at low temperatures 
and it would be desirabIe to check if such behaviour extends up to the tricriticd point. 

The above arguments certainly do not resolve the question as to whether the roughening 
transition join the bulk phase diagram at the tricriticd point or not. NevertheIess, such 
possibility is, in our opinion, not excluded. It seems quite possible that upon approaching 
the bulk phase boundary the large critical fluctuations will bend the roughening transition 
curve downward, 

Even if the roughening transition crosses the bulk phase boundary at the tricritical point 
in the BEG model, this coincidence does not appear in some other modeIs. In particular, 
we have found that in the S = 1 antiferromagnetic Ising model the interface can be rough 
even at the ground-state discontinuous phase transition (results will be published in the 
near future). One can argue, however, that in the latter model the Hamiltonian of the 
interface includes the next-nearest-neighbours interaction which might be responsible for 
non-vanishing of the excess interface energy at the phase boundary, 

figure 8. 

4. Conclusions 

In the present paper we have shown that for the BEG model the ground-state phase transitions 
are essentially connected with the interfacial properties. In particular, the continuous phase 
transitions are accompanied by strongly degenerate and fluctuating interfaces. On the other 
hand, discontinuous phase transitions are accompanied by non-fluctuating interfaces. As a 
result, for the three-dimensional model the line of roughening transitions meets the buIk 
ground-state phase boundary exactly at the junction of the continuous and discontinuous 
phase transitions. 

Using a simple energy-entropy argument, our results enable us to draw some conclusions 
concerning the behaviour of the roughening transition in the BEG mode1 even for finite 
temperatures. The most interesting and unresolved problem is the case D < 0, where 
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the model exhibits a tricritical behaviour. At low temperatures, where the model exhibits-- 
discontinuous phase @ansition, our estimations, as well as some other results IS], suggest 
that the interface might be non-rough even up to the triple h e .  Does this non-rough 
character extend up to the tricriticaI point as it does at the ground-state? Such a behaviour 
would reveal an intriguing connection between bulk and interfacial behaviour. Even if it 
is so, it is probably a property of only a particular cIass of models, In general, the next- 
nearest-neighbours interaction, which is common in experimentally accessible systems, will 
change the energy of interfaces and modify this behaviour. 
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